6/28/2021 iPoster Gallery



# Evaluation of a Rapid Blood Culture Assay for Phenotypic Antimicrobial Susceptibility Testing of Gramnegative Bacteria on Antimicrobial Use in Children



Thao Truong1, Irvin Ibarra Flores1, Kanokporn Mongkolrattanothai2,3, Jennifer Dien Bard1,3

Pathology & Laboratory Medicine at Children's Hospital Los Angeles1; Department of Pediatrics, Division of Infectious Diseases, Children's Hospital Los Angeles2; Keck School of Medicine at the University of Southern California3

# Introduction

- Rapid identification and antimicrobial susceptibility testing (AST) from positive blood cultures can decrease the time to optimal therapy and reduce the use of broad-spectrum agents
- The Accelerate Pheno Blood Culture panel (Pheno) provides AST of select on-panel Gramnegative organisms directly from positive blood cultures.
- We sought to determine the performance and the clinical impact of Pheno at our pediatric hospital compared to the BD Phoenix AST system (reference).

# Methods

- We conducted chart review on a total of 100 cases tested by conventional AST directly from positive blood culture cell pellet during the period of May 2018 - April 2019 and a total of 97 cases tested by Pheno during May 2019 -March 2021. A total of 183 patients were tested.
- Pheno results in the test group were compared to the BD Phoenix AST system in the reference group.
- Duration of therapy, time to optimal therapy, and length of stay were calculated.

# Results

Table 1. Demographics and clinical outcomes

|                        | Pre-implementation | Post-implementation | p value |
|------------------------|--------------------|---------------------|---------|
| Demographics           | (n = 90)           | (n = 93)            |         |
| Median age             | 6.4                | 2.3                 | 0.16    |
| Female                 | 40 (44.4)          | 40 (43.0)           | 0.88    |
| Immunocompetent        | 6 (6.7)            | 17 (18.3)           | 0.02    |
| Chart review           | (n = 100)          | (n = 97)            |         |
| Mean length of stay    | 17.0 days          | 14.0 days           |         |
| 30 day mortality       | 4 (4.0)            | 7 (7.2)             | 0.37    |
| CVAD line removal      | 28 (28.0)          | 22 (22.7)           | 0.42    |
| Community-onset        | 56 (56.0)          | 63 (64.9)           | 0.24    |
| Hospital-onset         | 44 (44.0)          | 34 (35.1)           | 0.19    |
| Antimicrobial duration | (n = 100)          | (n = 97)            |         |
| Meropenem              | 47.7 hours         | 25.2 hours          | < 0.01  |

Figure 1. Median time to AST and optimization of therapy from time of receipt in laboratory

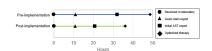
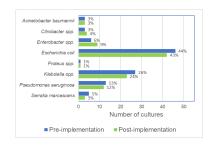
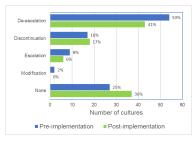





Figure 2. Organisms identified in blood cultures



### Results

Figure 3. Category of antimicrobial change after susceptibility testing results



**Table 2.** Antimicrobial susceptibility agreement between Pheno and reference method

| Antibiotic              | Minor<br>errors (%) | Major<br>errors (%) | Very major errors (%) |
|-------------------------|---------------------|---------------------|-----------------------|
| Amikacin                | 0                   | 0                   | 0                     |
| Ampicillin-sulbactam    | 20.7                | 1.7                 | 1.7                   |
| Aztreonam               | 2.6                 | 0                   | 0                     |
| Cefazolin               | 16.1                | 5.4                 | 0                     |
| Cefepime                | 6.8                 | 0                   | 0                     |
| Ceftazidime             | 16.1                | 2.3                 | 0                     |
| Ceftriaxone             | 0                   | 1.3                 | 0                     |
| Ciprofloxacin           | 3.4                 | 0                   | 0                     |
| Ertapenem               | 1.4                 | 0                   | 0                     |
| Gentamicin              | 4.6                 | 2.3                 | 0                     |
| Meropenem               | 4.6                 | 0                   | 0                     |
| Minocycline             | 0                   | 0                   | 0                     |
| Piperacillin-tazobactam | 14.9                | 0                   | 0                     |
| Tobramycin              | 4.6                 | 0                   | 0                     |
| Total                   | 7.56                | 0.94                | 0.10                  |

### Results

Differences in categorical agreement

- 72 minor errors
  - Overcalling
    - . 26.4% (R) when reference was (I)
  - 61.1% (I) when reference was (S)
  - Undercalling
    - 5.6% (I) when reference was (R)
  - 6.9% (S) when reference was (I)
- · 9 major errors
  - 1 ampicillin-sulbactam, 3 cefazolin, 2 ceftazidime, 1 ceftriaxone, 2 gentamicin
- 1 very major error (ampicillin-sulbactam in Klebsiella pneumoniae)
- 9 of 12 ampicillin-sulbactam minor errors were due to overcalling resistance in Escherichia coli when the reference method was intermediate

#### Conclusions

- Pheno had accurate performance compared to the reference method. The majority of the minor errors were due to overcalling intermediate resistance when the reference was susceptible.
- The median time to initial AST report and optimal therapy decreased significantly after Pheno implementation.
- There was no significant impact on clinical outcomes such as 30-day mortality or central venous access device removal.
- There were significantly more immunocompetent patients in the post-implementation group, potentially impacting these results.
- The median duration on broad-spectrum meropenem decreased by 22.5 hours after Pheno implementation (P<0.01).</li>

CONTACT AUTHOR

