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Phenotypic antimicrobial susceptibilities are particularly valuable for P. aeruginosa due 16 

to the complexity of resistance mechanisms this organism can harbor.  The Accelerate 17 

PhenoTest® BC kit (AXDX) provides a fast phenotypic antimicrobial susceptibility testing (AST) 18 

method for testing P. aeruginosa directly from positive blood culture. This study evaluates 19 

updates to the Accelerate PhenoTest® BC kit made in order to improve the performance of 20 

beta-lactams when tested against P. aeruginosa.(1, 2)  21 

144 P. aeruginosa isolates were spiked into a blood culture bottle containing healthy 22 

donor blood and incubated until positivity.  Aliquots of positive blood culture were tested on 23 

the Accelerate Pheno® system (software 1.4.1.25) as previously described.(3)  AST was also 24 

performed in triplicate by CLSI reference broth microdilution (BMD) using isolated colonies.(4) 25 

MIC results were compared to BMD to calculate essential agreement (EA), categorical 26 

agreement (CA), very major (vmj, susceptible by AXDX, resistant by reference), major (maj, 27 

resistant by AXDX, susceptible by reference), and minor (min, intermediate by one AST method, 28 

susceptible or resistant by the other method) error rates.(5)  For EA, BMD results were 29 

truncated to the same range as those reported by the Accelerate Pheno® system. FDA and CLSI 30 

breakpoints were applied (Table 1). (6, 7)   31 

Table 2 provides the EA, CA, and error rates for the isolates tested on both the updated 32 

and previous assays.  With respect to the updated assay and when interpreted with FDA 33 

breakpoints, nine of eleven errors observed for cefepime were within EA, including the single 34 

vmj error.  Cefepime and ceftazidime do not have intermediate interpretation by FDA 35 

breakpoints; therefore, all errors can only be classified as maj or vmj for these antimicrobials.(6)  36 

When interpreted with CLSI breakpoints, all cefepime errors were min and 17/21 errors were 37 
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within EA.  Bias towards a more resistant MIC for cefepime was observed by AXDX(Table 3).  38 

High cefepime min error rates with P. aeruginosa have been observed in various studies with 39 

other automated platforms such as Vitek®2 (9-18%), MicroScan WalkAway (32%-48%) and BD 40 

Phoenix™ (18%).(8–11)  When interpreted by FDA breakpoints, a total of five errors were 41 

observed with ceftazidime and 2 of the 3 vmj errors were within EA; a good case example 42 

demonstrating the challenges with errors when an intermediate breakpoint does not exist.  43 

When interpreted with CLSI breakpoints, 1 maj and 1 vmj error remained for ceftazidime, with 44 

EA and CA above 90%.  Fifteen min errors (10.4%) were observed with meropenem (Table 2), 45 

among which 9 were within EA. Eleven of the min errors were due to MIC interpreted as 46 

resistant by AXDX but intermediate by BMD.   47 

Overall, the most notable improvements with the updated assay are within the maj and 48 

min error rates.  In the original clinical trial data set for Accelerate Pheno® system, a total of 43 49 

maj errors were observed amongst the Gram-negative organisms, with 26% for beta lactams 50 

tested against P. aeruginosa.  This resulted in major error limitations imposed by the FDA and 51 

the aim for the updates to the assay described herein. (1)   The data presented here are from a 52 

different population of isolates than those used in the original clinical trial.  Specifically, the 53 

current data set was enriched to include approximately 20% of isolates with MICs at the 54 

breakpoint, allowing for a robust evaluation of performance post-improvement.  Furthermore, 55 

the population described here is approximately 10% less susceptible than what is likely to be 56 

observed in clinical laboratories based on US surveillance of P. aeruginosa bloodstream 57 

infections.(12)  This is important as differences in MIC distributions impact the propensity of 58 

errors.  Therefore, direct comparisons between two different isolate sets, such as the present 59 
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data and that published in Pancholi et al, cannot be directly made.  Nonetheless, the 60 

improvements described herein led to the removal of maj error limitations for 61 

piperacillin/tazobactam, meropenem, ceftazidime, and cefepime.     62 

P. aeruginosa susceptibility testing is known to be challenging.(8–11)  As technologies 63 

for susceptibility testing advance, assay development of these difficult-to-test organisms is 64 

prudent and likely an ongoing necessity.  Moreover, clinical microbiology labs should seek to 65 

understand their local epidemiology when evaluating an assay as performance can vary 66 

amongst different populations of isolates. These data demonstrate markedly improved 67 

performance, particularly with respect to maj, of beta lactams against P. aeruginosa on the 68 

Accelerate Pheno® system compared with previous versions of the assay.     69 

  70 
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Table 1. Current FDA and CLSI designated breakpoints of anti-pseudomonal beta lactams  117 

Beta-lactam antibiotic Susceptible Intermediate Resistant 
Aztreonam (FDA & CLSI) ≤8 16 ≥32 
Cefepime (FDA) ≤8 - ≥16 
Cefepime (CLSI) ≤8 16 ≥32 
Ceftazidime (FDA) ≤8 - ≥16 
Ceftazidime (CLSI) ≤8 16 ≥32 
Meropenem (FDA & CLSI) ≤2 4 ≥8 
Piperacillin/tazobactam (FDA & CLSI) ≤16/4 32/4-64/4 ≥128/4 
MICs are represented in µg/mL. 118 
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Table 2. Performance of anti-pseudomonal beta lactams tested against P. aeruginosa isolates on the Accelerate PhenoTest® BC 120 
kitcompared with BMD.  121 

Beta-lactam antibiotic N S R CA EA vmj maj min 
*Aztreonam (FDA & CLSI) 144 105 35 134 (93.1%) 135 (93.8%) 0 (0%) 1 (1.0%) 9 (6.2%) 
Aztreonam (FDA & CLSI) 144 105 35 122 (84.7%) 124 (86.1%) 0 (0%) 1 (1.0%) 21 (14.6%) 
*Cefepime (FDA) 143 107 36 132 (92.3%) 136 (95.1%) 1 (2.8%) 10 (9.3%) - 
Cefepime (FDA) 144 108 36 84 (58.3%) 81 (56.2%) 0 (0%) 60 (55.6%) - 
*Cefepime (CLSI) 143 107 29  122 (85.3%) 136 (95.1%) 0 (0%) 0 (0%) 21 (14.7%) 
Cefepime (CLSI) 144 108 29 76 (52.8%) 81 (56.2%) 0 (0%) 2 (1.9%) 66 (45.8%) 
*Ceftazidime (FDA) 141 103 38 136 (96.5%) 136 (96.5%) 3 (7.9%) 2 (1.9%) - 
Ceftazidime (FDA) 144 104 40 46 (31.9%) 47 (32.6%) 0 (0%) 98 (94.2) - 
*Ceftazidime (CLSI) 141 103 31 132 (93.6%) 136 (96.5%) 1 (3.2%) 1 (1.0%) 7 (5.0%) 
Ceftazidime (CLSI) 144 104 33 40 (27.8%) 47 (32.6%) 0 (0%) 20 (19.2%) 84 (58.3%) 
*Meropenem (CLSI & FDA) 144 102 25 127 (88.2%) 136 (94.4%) 0 (0%) 2 (2.0%) 15 (10.4%) 
Meropenem (CLSI & FDA) 144 102 25 98 (68.1%) 107 (74.3%) 0 (0%) 2 (2.0%) 44 (30.6%) 
*Piperacillin/tazobactam 
(CLSI & FDA) 

138 101 30 130 (94.2%) 133 (96.4%) 0 (0%) 0 (0%) 8 (5.8%) 

Piperacillin/tazobactam 
(CLSI & FDA)  

144 106 31 45 (31.2%) 52 (36.1%) 0 (0%) 12 (11.3%) 52 (36.1%) 

*Designates the performance of the improved software.  122 
 123 
 124 
  125 
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Table 3. Error trends of beta lactam antibiotics tested against P. aeruginosa isolates on 126 
Accelerate PhenoTest® BC kit compared with BMD. 127 
 128 

Beta-lactam antibiotic  
(n = errors) 

More 
susceptible 

More resistant within EA 

Aztreonam n=10 6 4 9 
Cefepime n=11 1 10 10 
Cefepime (CLSI) n=21 9 12 17 
Ceftazidime n=5 3 2 2 
Ceftazidime (CLSI) n=9 3 6 6 
Meropenem n=17 1 16 9 
Piperacillin/tazobactam n=8 1 7 6 

 129 
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